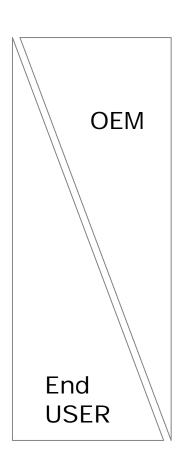

10 Maggio 2017

La Festo Road Map Industry 4.0: Come realizzare la Digital Trasformation nelle Organizzazioni industriali

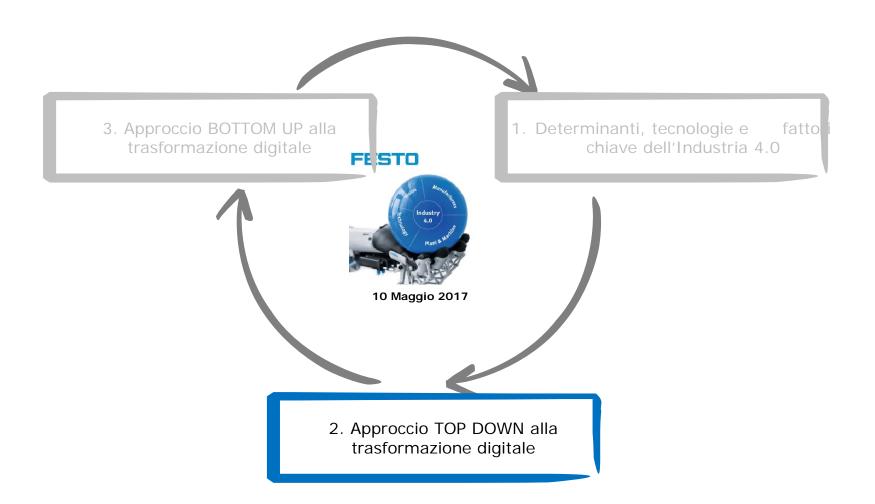
Obiettivi e temi dell'intervento

 Illustrare il nostro approccio alla digital tranformation delle aziende integrando i fattori abilitanti dell'industria 4.0 con la strategia aziendale e la realizzazione di processi senza sprechi.

la road map verso Industria 4.0 [140] due approcci possibili e distintivi per tipo di azienda


TOP DOWN

- Agenda 140 allineata con la strategia
- Assessment I40
- Road map progetti


BOTTOM UP

- Value stream mapping
- 7 sprechi e 140
- Value stream design con fattori abilitanti 140

Temi dell'intervento

Il percorso: un lavoro in team

2

Preparazione e allineamento sui

temi 140

1

Assessment tecnologico, organizzativo e culturale

Disegnare lo stato futuro

Definire i business case dei progetti

5

Road map 140

RAGGIUNGERE UNA COMPRENSIONE CONDIVISA SUI TEMI DELL'INDUSTRIA 4.0

- Cosa si intende per Industria 4.0. overview sulle tecnologie abilitanti
- L'industria 4.0 e l'evoluzione del bisogno dei clienti
- L'evoluzione della propria value proposition

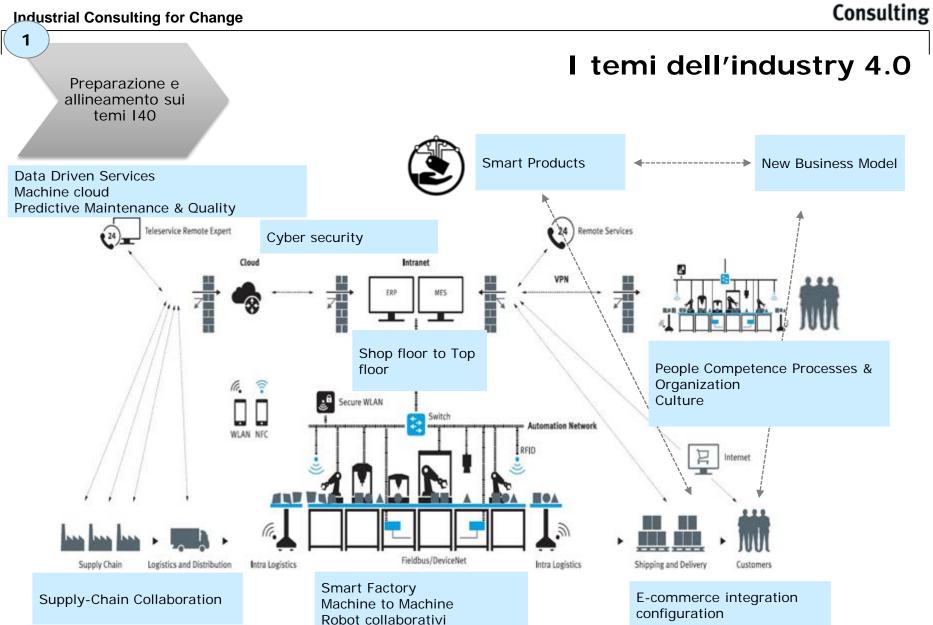
COMPRENDERE F CONDIVIDERE LO STATO DELL'ARTE

- 1. Assessment I40 prodotto
- 2. Assessment I40 processi produttivi
- 3. Assessment sui processi core
- 4. Assessment I40 cultura e competenze core

INTEGRARE 140 NEI MODELLO DI **BUSINESS** AZIFNDALF

3

- Livello di arrivo e Gap analysis:
 - sul prodotto
 - Sui processi produttivi
 - · Sui processi core
 - Sulla cultura e competenze core
- Individuazione delle strategie e dei progetti per colmare i Gap


VALUTARE I PROGETTI F DEFINIRE LE PRIORITA'

- Definire costi e benefici dei singoli progetti (business case)
- Impostare la matrice impattorisorse (BDC Matrix©)
- Definizione delle priprità

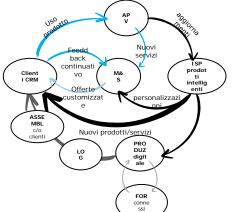
PIANIFICARE IL **CAMBIAMENTO**

- Impostare il master planning dei progetti
- Definire la struttura dei singoli progetti
- Identificare gli indicatori di controllo dei progetti
- Definire il sistema di controllo del cambiamento (Hoshin Kanri)

Assessment tecnologico, organizzativo e culturale

L'assessment industry 4.0

Allineamento strategico: come evolverà la nostra value proposition?


Assessment tecnologico sul prodotto (toolbox VDMA) Assessment tecnologico in fabbrica (toolbox VDMA)

Assessment dei processi core (Festo 140)

Assessment della cultura e delle competenze chiave (Festo 140)

Assessment tecnologico, organizzativo e culturale

- o II toolbox VDMA è stato concepito con lo scopo di capire i differenti livelli di applicazione dell'Industry 4.0 sui prodotti e sui processi di fabbrica
- Può essere fonte di ispirazione per le innovazioni

Cos'è il toolbox 4.0 VDMA

DECENTRALIZZAZIONE

M2M COMMUNICATION

INTEGRAZIONE

AZIENDALE

INTEGRAZIONE

COMMUNICAZIONE

INTERFACCIA UOMO

MACCHINA

EFFICIENZA SMALL

BATCHES

SEZIONI E DIMENSIONI

PROCESSI

COMUNICAZIONE

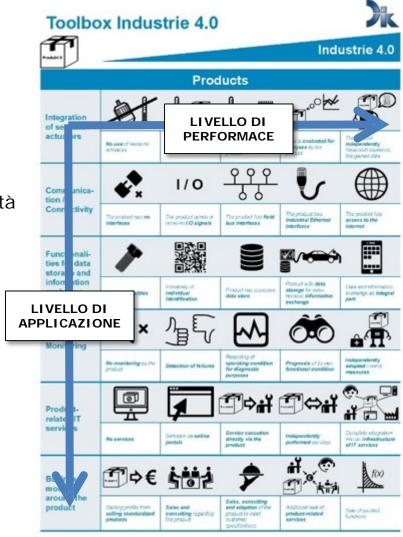
DATA STORAGE

MONITORAGGIO

IT SERVICE

BUSINESS MODELS

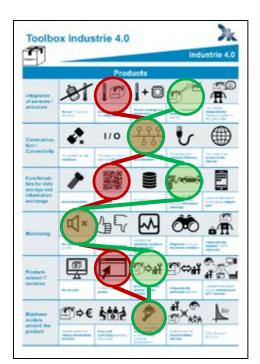
BCI: Industry 4.0


9

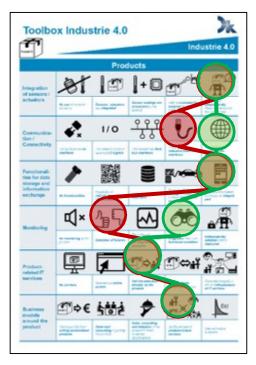
Toolbox Industry 4.0

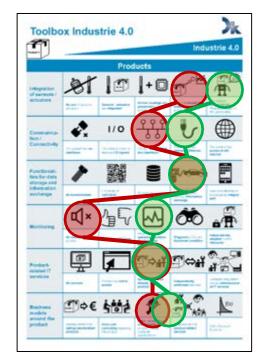
Struttura del Toolbox

- Livello di applicazione
 - ☐ Sei livelli di applicazione identificano i temi per le idee nel campo dell'Industry 4.0
 - ☐ La combinazione di questi fornisce la funzionalità
- ☐ Livello di Performance
 - Cinque Tecnologie, costruite su 5 livelli di performance per posizionamento e sviluppo della strategia.
 - Il livello più alto rappresenta la visione dell'Industry 4.0

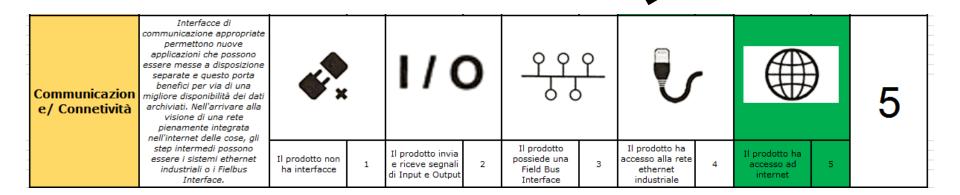

Definizione del profilo target per il portfolio del prodotto

Prodotto 1


Prodotto 2



Prodotto n



:SEMPIO

Comunicazione: Profilo macchina XXXX

Commenti sulla valutazione

Livello 5 – Il prodotto ha accesso ad internet: la macchina è raggiungibile tramite software di desktop remoto (Es. Teamviewer) che permettono ai tecnici di verificare lo stato di funzionamento, lo stato degli allarmi e poter interagire con gli operatori quando si presentano delle problematiche di funzionamento

Data Storage: Profilo macchina XXX

Funzionalità per conservazione dei dati e scambio di informazioni

I prodotti possono differire tra di loro per differenti funzioni in archiviazione dei dati e scambio di informazioni. Ouesta progressione include semplici codici a barre e archivi dati che possono essere riscritti come anche presentazione di informazioni e scambio come un componente integrale del prodotto.

5

Nessuna funzionalità

Possibilità di identificazione individuale

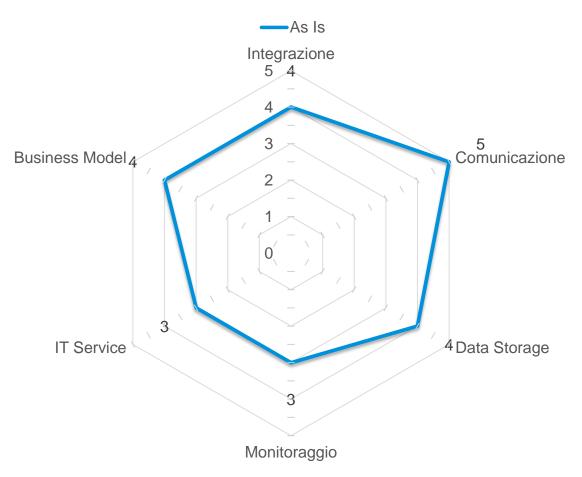
1

Il prodotto ha un archivio dati passivo

Il prodotto possiede un archivio dati che permette lo scambio di informazioni con la rete aziendale

Il prodotto ha accesso ad un cloud in internet

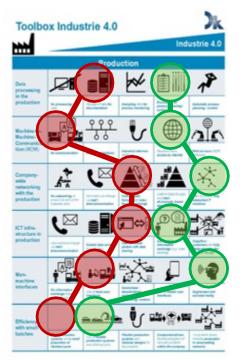
Commenti sulla valutazione


Livello 4 – Il prodotto possiede un archivio dati che permette lo scambio di informazioni con la rete aziendale: i dati di processo vengono sia archiviati sui sistemi di macchina, che resi disponibili alla rete aziendale per analisi di produttività e per l'integrazione con il sistema logistico della fabbrica. (non sono stati specificati durante l'assessment i particolari relativi a questa funzionalità)

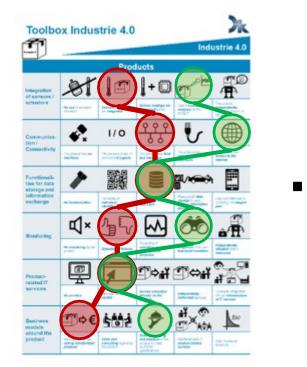
Score globale: 77%

ESEMPIO

Profilo Macchina XXX



Definizione del profilo target per le varie aree della produzione


Area 1

Area n

Industrial Consulting for Change Assessment dei processi due unità produttive ESEN DIMENSION SPEGAZORE PRODUZIONE Unità 1 Unità 2											
DIMENSION	SPIEGAZIONE					PRODUZIONE				Unita 1	Unità 2
Processamen dei dati nell:	H processmento dei dati per le vonie appiace uni è l'andomentale nell'applicatione dell'indictaira 4 D. Questo prio escre usato per la dacumentacione semplic au à come		•			₩			18	4	4
produzione	per obietisii di manitaraggio del processo e pianifacazine e cantallo autonomo dei pracessi	Nessun processamento dei dati	1	Archivi di dati per la documentazione	2	Analisi dei dati per il monitoraggio dei processi	Valutazione per il planning il controllo del processo	4	Controllo e pianificazione automatica dei processi		
Comunicazion tra macchine (M2M)	Le interface per lo scombio carlomenico dei deia útocoreso lle macchine forma la taxa per marecció applicabiel dele industrie 4.0. l'inibitas interface come comessione etternet interviabi ed interface une l'asson applicate nello voltago interface in la la compania del ini- ne popie carine i non somobio di info	A B		999		V				2	1
	те аррисанат сон о эсоного инеја antonome affrono il vontaggio della separazione tro infarmazione e hogo.	Nessuna comunicazione	1	Interfacce Field Bus	2	Interfacce Ethernet: 3	Le macchine hanno accesso a internet	9	Servizi Web (MZM 5		
Network del produzione	unificate, work flow standardizati e	4		C					*	2	2
	l'utiliczo dei formati dei file di cui l'intero compognio può beneficione.	Nessun networking di produzione con le altri business units	1	Scambio di informazioni via mail e telefono	2	Dati e forme la oratorman e regole par lo scambio di dal	Dati uniformati e collegati attraverso data server	4	Saluziani completamente interconnesse interdivisionali		
Infrastruttura nella produzio										2	2
	traszone partur a comunicacióne veci- based. Processi automaticarii per la scombio di dati con i parturer esterni della volue-chain a del value-netwark rappresentano passi verso uno visione	Scambio di informazioni via mail e telefono	1	Server centrali nella produzione	2	Portal Nesati su internet co la condicisone dei dati	Scambio di informazioni automatizzato (tracking dell'ordine)	4	Familiari e dienti sano pienamente integrati nel design del produzione.		
Interfaccie Uc Macchina	Guardonio l'aumentare della complessità dei sistemi di produzione, le inter facce tomo-muchino si muorano verso un'accidizzazione. Nella realizi dell'indessità il comit disportmenti									2	2
	gli occhia di realià amenina farrisano le giuste infarmazioni giuste ol mamento giusto esono promettenti per uno semplificazione del knaro dei	Nessun scambio di informazioni tra uomo e macchina	1	Utilizzo di interfacce locali (PC)	2	Murituraggio e controllo della produciono Ganualizzata e Decentralizzata	Utilizzo di interfacce mobili (Tablet, Smartphone)	4	Redtà aumentata e assistit: [5] (Visuri VR)		
Efficienza co piccoli lotti	il trend per quanto rigarato la produción de lonel e una continua produción e di lotti sempre più piccoli parto a un commento della cample selti del pracessi di producione. Ul fettare campetitiva è quello di raggiengen una obra efficienza attroverso piccoli latir. Per raggiengen e para l'alceletto una struttura	HH		^_	2		₽ ₩ }		Proteine gietta da	2	2
	mahdare per i nispettiri pradati appure un uso flessibile della struttura di pradizione con una coordinazione nelle rispettire catene divolare passano	Sistema di produzione rigid e una piccola porzione di parti identiche	1	Utilizzo di sistemi di produzioni flessibili e parti identiche	2	roduzione flessibile e de ion modulare per i p. schtti	Produzione guidata dai componenti dei prodotti modulari della compagnia	4	Produzione guidata dai componenti dei prodotti modulari in network a valor aggiunto		

Modular Automation System VUVG

- Fino a 8 Celle di produzione modulare
- Setup Autonomi di processi individuali
- Standardizzazione delle interfacce
- Archivio dei parametri di processo e dei lotti con chip RFID e codici matrix

VANTAGGI

- Più di un milione di valvole assemblate ogni anno
- Alta flessibilità e varianza
- Unico cycle time per assemblaggio e test
- Sistema modulare estensibile
- Lotti economici 10-10.000

50%

Industrie

Location: W20 B55 E3 | Status: in production

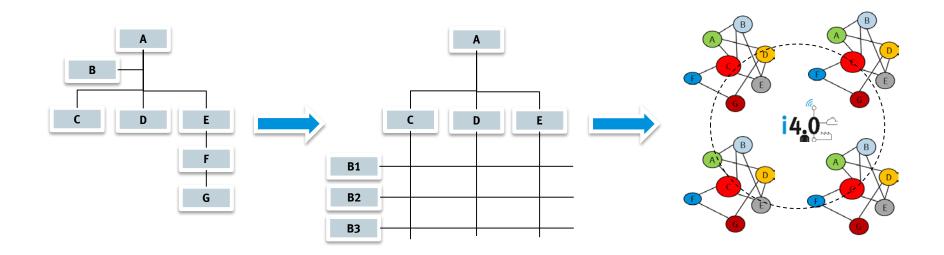
4.0

0%

Modular Automation System

	Noosuma	Documentazione	Analisi	Steerage	Automatico		
Trattamento dei dati	Nessuno	Documentazione	Artalisi	Steelage	Automatico	4	I dati della ricetta sono spediti dai sensori RFID direttamente nel processo
Comunicazione M2M	Nessuno	Fieldbus	Ethernet	Internet	Web-Service	3	Le celle sono connesse da un sistema di controllo di processo 300 indirizzi IP
Integrazione dell'organizzazio ne	Nessuno	Mail/Telefono	Formato Standard	Data server	Completam ente connessa	3	Trasferimento dei dati ERP al Sistema di controllo di processo
Infrastruttura ITC dentro il processo di produzione	Mail/Telefono	Data server	Portali Internet	Automatica	Supply Chain Connessa	3	Le informazioni di prodotto sono disponibili al cliente attraverso il codice matrix. Tutti i dati di processo sono archiviati
НМІ	Nessuno	Locale	Centrale	Mobile	Realtà aumentata	3	Le informazioni sono disponibili attraverso il controllo di processo. L'accesso mobile è limitato
Efficienza per lotti di dimensioni piccole	Non Flessibile	Flessibile	Modulare	Componen t drive	Networks	3	Linea di costruzione modulare, con interfacce standard. Alta varianza possibile. Lotto 10

Assessment tecnologico, organizzativo e culturale


Le dimensioni organizzative e culturali modello Festo 4.0

Qualsiasi sia la strada l'impatto sarà profondo...

Cultura aziendale	• più fondata su fiducia, trasparenza, collaborazione
Modelli organizzativi	• più decentrati, meno gerarchici, più aperti all'esterno e più interattivi verso gli stakeholders
Modelli operativi	• più integrati nell'esecuzione, connessioni dirette, superamento silos funzionali, snellimento decisioni
Pratiche manageriali in uso	• Revisione di: Gestione Obiettivi, Decisioni, Comunicazione, Reporting, Organizzazione, Procedure, Riunioni e Deleghe
Ruolo del vertice	• Diversi Modelli di Leadership
Sistema valutazione del personale	• Ruoli sono più Liquidi e Verticali
Il processo di apprendimento	Più rapido e differente nelle modalità e negli strumenti, con le competenze più integrate

Evoluzione dei modelli organizzativi e delle competenze chiave nell'azienda digitale

- Strutture Rigide
- Obiettivi Top-Down e Non chiarificati nella linea di comando
- Flussi Verticali delle Informazioni
- Il Ruolo come elemento centrale del Modello Aziendale

- Strutture **Matriciali**
- Obiettivi Top-Down e Bottom-Up
- Flussi Trasversali delle Informazioni
- **Sistemi di Ruoli** come elemento centrale del Modello Aziendale

- Strutture «Holocracy» dove si condividono Valori e Cultura
- Obiettivi **Trasparenti, Diffusi e Condivisi**
- Flussi Circolari delle Informazioni
- La Competenza come elemento centrale del Modello Aziendale

Ruoli chiave nell'Industry 4.0

Data Scientist Department

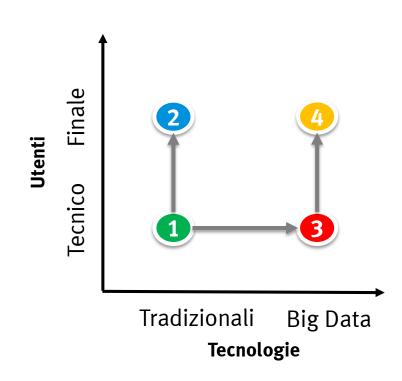
□ Data Team Manager

- Interazione con i clienti interni
- Identificazione dei data needs
- Gestione del team

□ Data Engineer e Data Architect

- Sviluppo e Integrazione dei sistemi informatici
- Data Modelling
- Database Design

□ Data Scientist


- Analisi Statistiche
- Sviluppo e Implementazioni di Modelli
- Machine Learning

□ Data Visualization Expert

• Information Design

□ Cluster Administrator

· Amministrazione di Sistemi Informatici

Assessment Competenze e Modello Organizzativo Industry 4.0

Affrontare la Modularità

Problem Solving su Modelli **Complessi e Caotici**

La Comunicazione Interfunzionale

Digital Communication

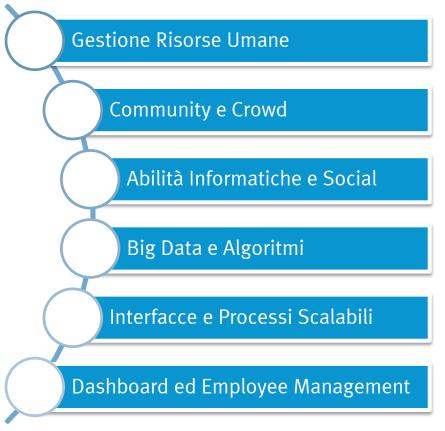
Orientamento al cliente

Cultura del servizio al cliente interno
Customer Experience End to End

La Decentralizzazione

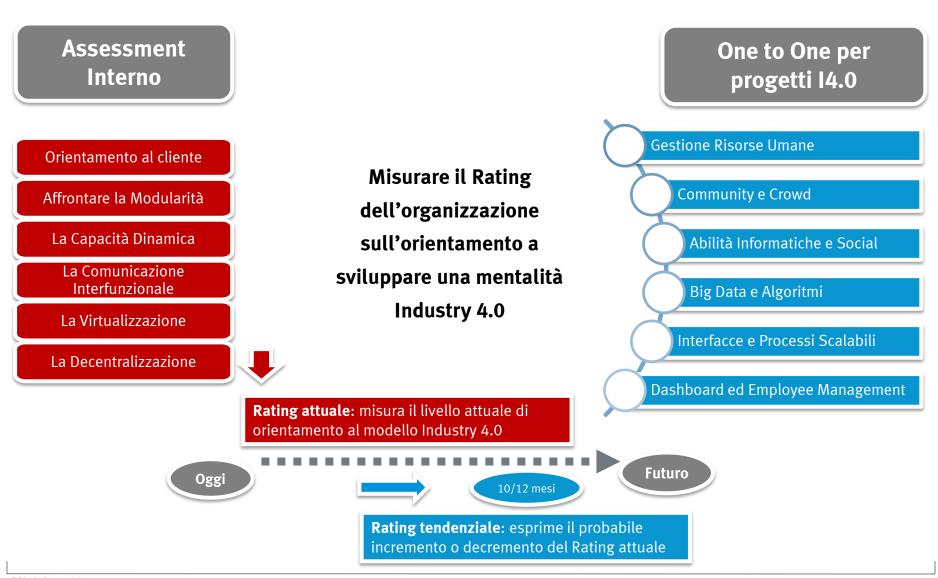
Responsabilizzazione diffusa delle Persone

La Capacità Dinamica


Sviluppare **Agile** Leadership

La Virtualizzazione

Gestire le **Relazioni** nella Digital Communication (Velocità)


Assessment Competenze e Modello Organizzativo Industry 4.0

- Modelli Organizzativi
- Decentralizzare il processo decisionale
- Diffondere le **informazioni** attraverso sistemi avanzati
- Individuare le diverse tipologie di Community e Crowd
- Tipologia di **ingaggio** e comunicazione
- Gamification e Incentive competitions
- Digital e Social Communication
- Information Based su Prodotti e Servizi
- Digital Communication come forma di Ricavo
- Data Scientist Division (CDO: Chief Data Officer)
- Machine Learning e Al
- Cybersicurity (CTO: Chief Tecnology Officer)
- Gestire gli input provenienti dall'esterno
- Automazione dei processi
- **Diffondere** i KPI aziendali
- Stimolare la **Sperimentazione**
- Modelli di Innovazione prodotto / servizio (Lean start-up, Agile4HD)

Assessment Competenze e Modello Organizzativo Industry 4.0

Rating Attuale - Case Study

Scala e definizioni

Rating A

L'organizzazione è completamente coinvolta nel nuovo modello dell'industry 4.0

Rating B

L'organizzazione è molto attiva nel seguire le logiche del modello Industry 4.0

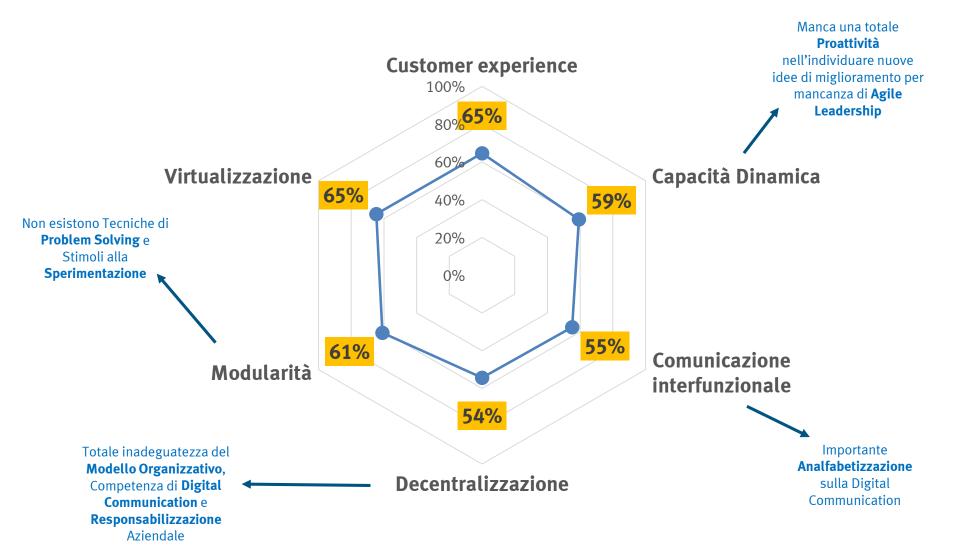
Rating C

L'organizzazione ha cominciato a muovere i primi passi nel modello Industry 4.0

88 punti

24

Rating D


L'organizzazione non ha attivato un orientamento al modello Industry 4.0

Rating E

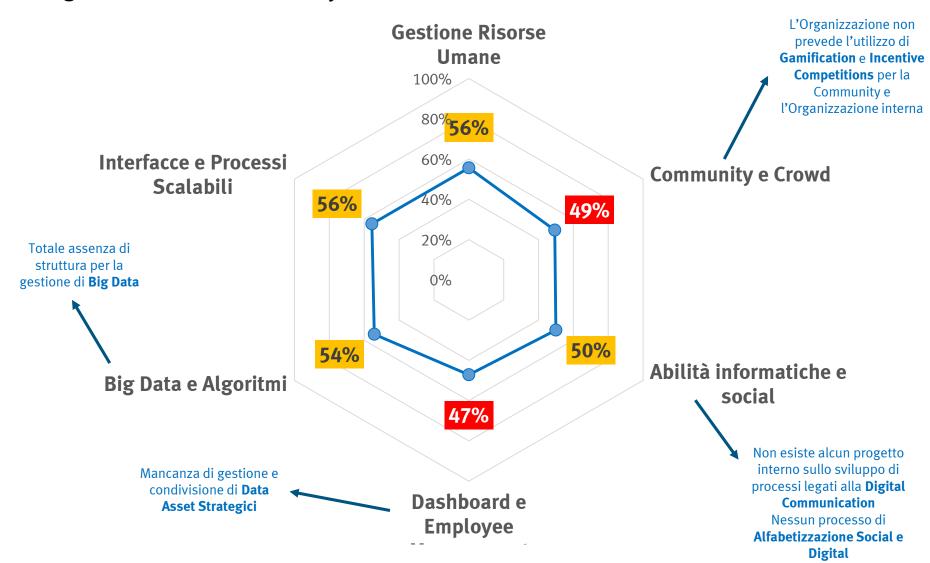
L'organizzazione non è orientata al Modello Industry 4.0

Dettaglio Rating Attuale - Case Study

Rating Tendenziale - Case Study

Positivo

Neutro


Negativo

Rating Tendenziale - Case Study

Progetto Industry 4.0 - Case Study

Workshop #1 Next steps

•Lavoro di Gruppo su: Innovazione, Sperimentazione e Digitalizzazione

Pre-Work

 Valutazione e fine tuning dei Lavori di Gruppo del Wks1

Workshop#2 Pathfinder

•Costruire la Road Map dei progetti Industry 4.0

Workshop#3 Lunch

 Presentare alla popolazione professional la Road Map dello sviluppo sull'Industry 4.0

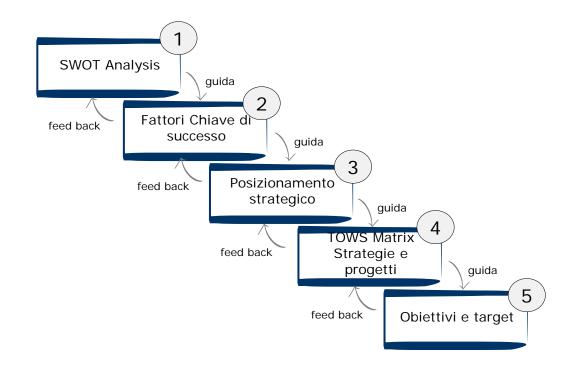
Sviluppo orientamento Industry 4.0

•Sviluppo e Realizzazione progetti Industry 4.0 Supporto al Knowledge Managemen t aziendale

Professional

Manager

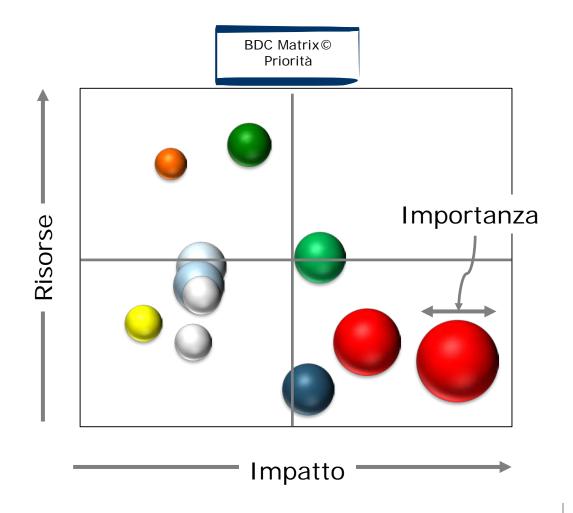
Professional


Manager

Disegnare lo stato futuro

Integrare 140 nel modello di business aziendale

- In questa fase si lavorerà in team con sistemi visual e con un approccio strutturato in cinque step che aiuterà il team a posizionarsi rispetto a uno stato futuro coerente con la strategia aziendale
- Anche in questa fase ci verrà in aiuto il toolbox 4.0 VDMA e il modello Festo I40 usati come stimolo alla generazione di nuove idee



Definire i business case dei progetti

Valutare i progetti e definire le priorità

 Per ogni progetto andranno definiti i business case (costibenefici), l'impatto sul business aziendale e grazie alla Business Development Contribution Matrix (BDC matrix ©) si definiranno le priorità

Road map 140

- Compilazione delle projects chart definendo obiettivi attività, kpi, target e risorse
- Disegnare la road map generale della trasformazione industry 4.0

Pianificare il cambiamento

Project chart

Progetto: xxx1

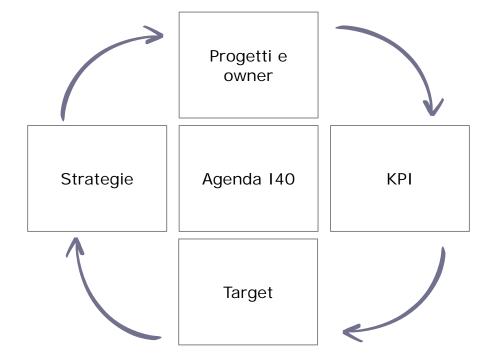
Obiettivi KPI

Target

Risorse
Planning

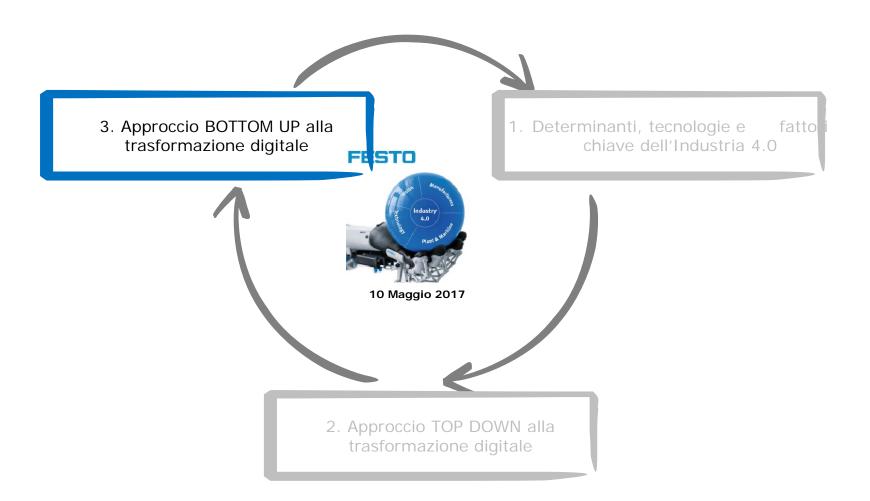
Road map

	2017		2018			2019						
	I	П	Ш	IV	I	П	Ш	IV	I	П	Ш	IV
Progetto 1												
Progetto 2												
Progetto 3												
Progetto n												

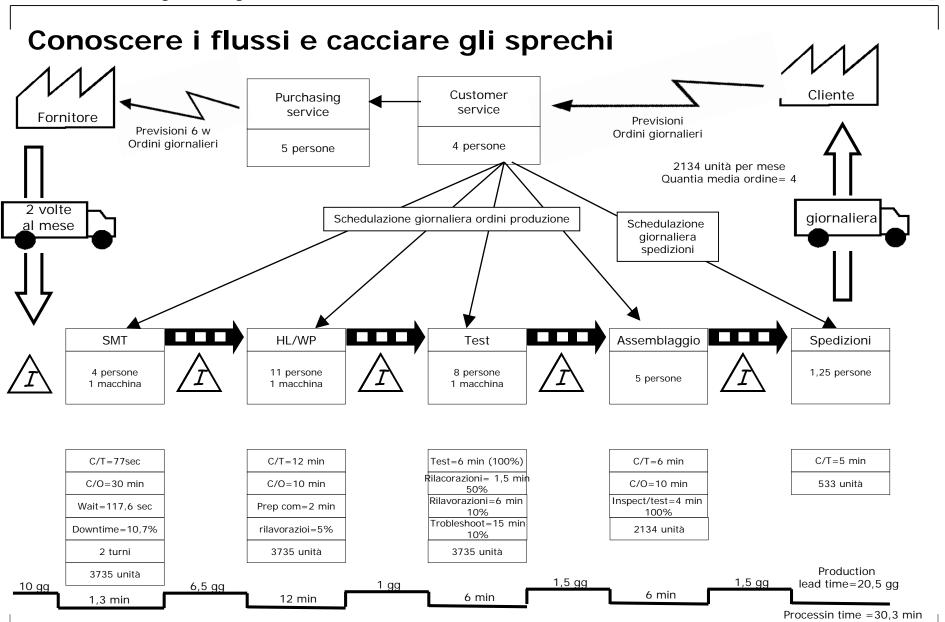

Road map 140

- Impiego della metodologia Hoshin-Kanri A3X (direzioneesecuzione) per la gestione e l'implementazione della trasformazione
- Individuare la coerenza e il legame tra strategia, progetti, kpi e target

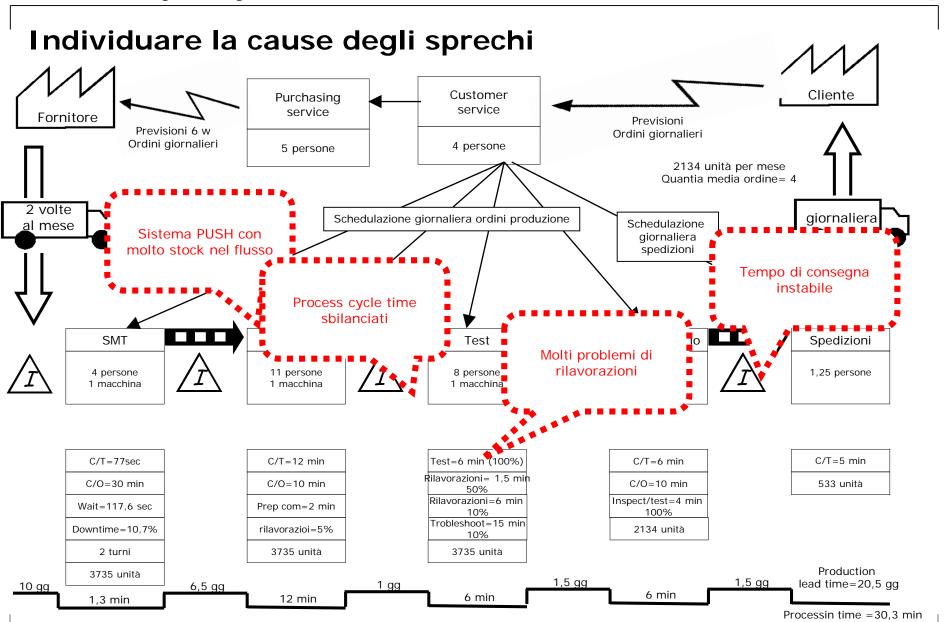
Gestire il cambiamento



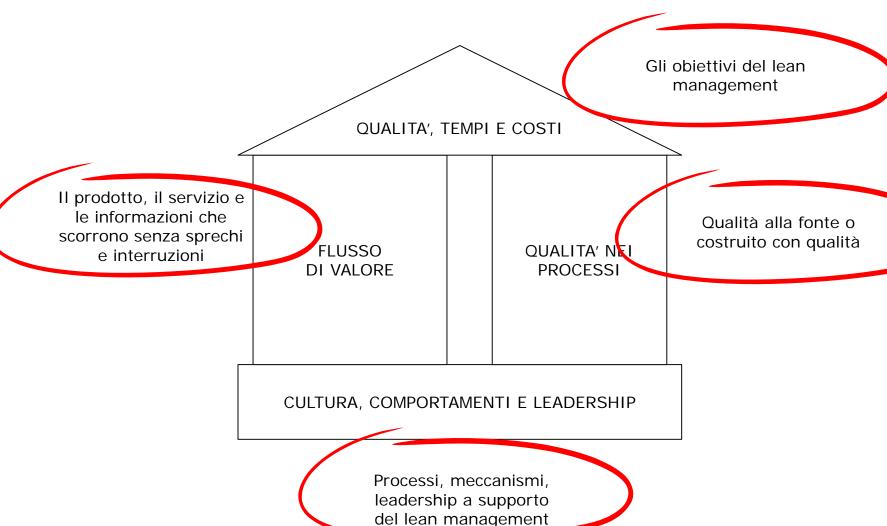
Hoshin Kanri (A3X)



Temi dell'intervento


Industrial Consulting for Change

Consulting


Industrial Consulting for Change

Consulting

I fini, i fondamenti e i pilastri del lean management(*)

(*) Taiichi Ohno: Lo spirito Toyota. Il modello giapponese della qualità totale

10 fattori chiave dell'implementazione della lean manufacturing (1)

1. Feedback dal fornitore

Critiche e performance dei prodotti e dei servizi vengono ricevute periodicamente dai fornitori, per un corretto flusso di informazioni

3. Sviluppo fornitori

Lo sviluppo del fornitore avviene in parallelo con quello del produttore, per evitare dislivelli nel livello di competenze

5. Pull Production

Una necessità dalla fine del processo dovrebbe attivare il flusso di produzione nelle fasi precedenti grazie al sistema kanban, simboleggiante una produzione JIT.

2. Consegne Just-In-Time (JIT) dai fornitori

Vengono consegnate solo le quantità richieste di prodotti dai fornitori

4. Coinvolgimento dei clienti

Il primo driven di un business sono i clienti, i loro bisogni e le loro aspettative dovrebbero essere messe in priorità alta.

6. Continuos Flow

Uno flusso di produzione continuo senza fermi dovrebbe essere stabilito all'interno dello stabilimento

Industry 4.0 Implies Lean Manufacturing: Research Activities in Industry 4.0 Function as Enablers for Lean Manufacturing Adam Sanders. Chola Elangeswaran, Jens Wulfsberg, Helmut-Schmidt-University, Institute of Production Engineering (Germany)

10 fattori chiave dell'implementazione della lean manufacturing (2)

7. Riduzione dei tempi di setup

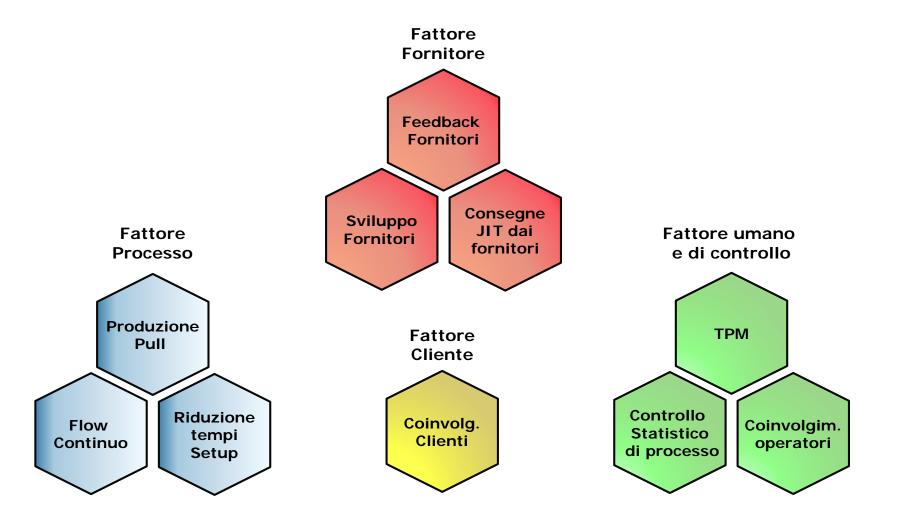
Il tempo richiesto per adattare le risorse al cambio di produzione dovrebbe essere mantenuto al minimo possibile.

8. Total Productive / Manutenzione preventiva

Il guasto di macchinari dovrebbe essere evitato con manutenzione preventiva efficace e periodica. Nel caso accadono, il tempo di riparazione deve essere mantenuto basso.

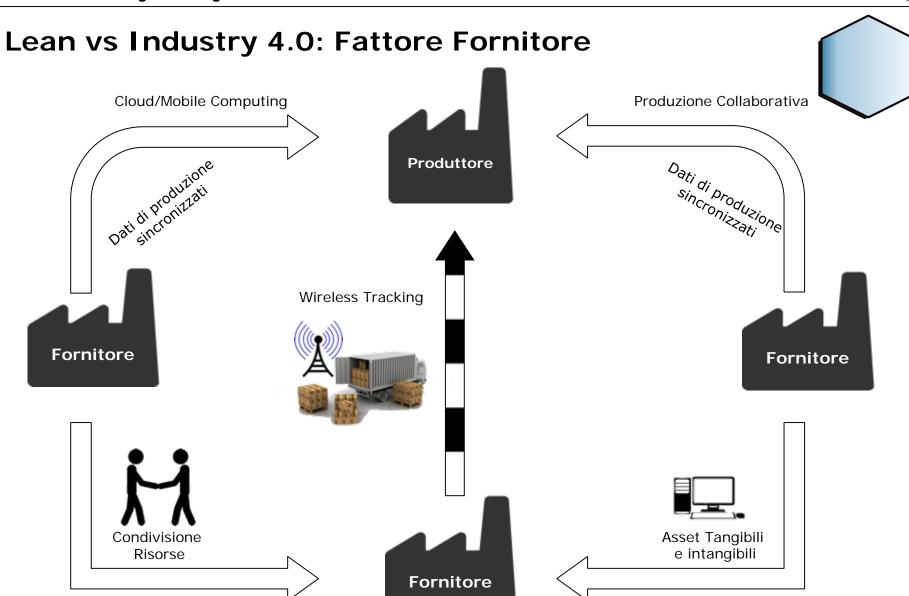
9. Controllo statistico di processo

La qualità dei prodotti è di prima importanza, nessun difetto dovrebbe essere trasferito da un processo a quello successivo.

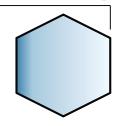

10. Coinvolgimento degli operatori

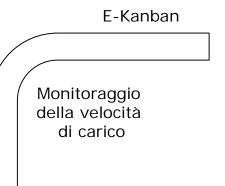
Con un adeguata motivazione e responsabilizzazione i lavoratori devono essere motivati per un contributo su larga scala in tutta l'azienda

Industry 4.0 Implies Lean Manufacturing: Research Activities in Industry 4.0 Function as Enablers for Lean Manufacturing Adam Sanders. Chola Elangeswaran. Jens Wulfsberg. Helmut-Schmidt-University. Institute of Production Engineering (Germany)



Le aree di intervento della Lean


Industry 4.0 Implies Lean Manufacturing: Research Activities in Industry 4.0 Function as Enablers for Lean Manufacturing Adam Sanders, Chola Elangeswaran, Jens Wulfsberg, Helmut-Schmidt-University, Institute of Production Engineering (Germany)



Lean vs Industry 4.0: Fattori di processo

Magazzino

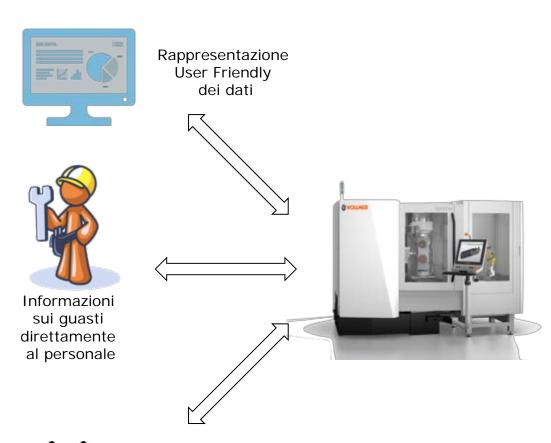
Sistema

Multi-Utente

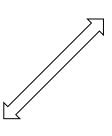
RFID - Tracking del Magazzino

Sensori di quantità e segnale di autorifornimento

Comunicazione Macchina – Pezzo in lavorazione



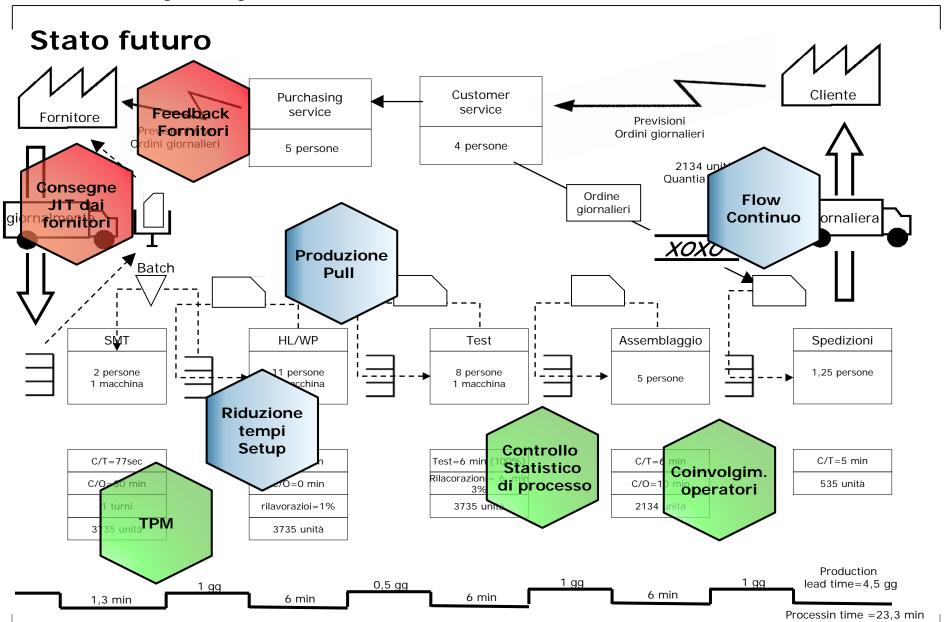
Plug & Play



Lean vs Industry 4.0: Fattori di controllo e operatori

Dati sulle operazioni archiviati

Analisi avanzate e Big Data



Auto-Manutenzione Auto-Conoscenza

Industrial Consulting for Change

Consulting

Sintesi Integrazione lean e Industry 4.0 [1/3]

Dimensioni del Lean Manifacturing	Sfide per l'implementazione della lean	Soluzione Industry 4.0			
	Risorse e competenze limitate	Produzione Collaborativa			
Feedback del fornitore	Differenze nei business models, nelle	Migliori meccanismi di comunicazione			
	operations e nella manutenzione dei dati	Sincronizzazione dei dati			
	Status incompleti dei beni spediti	Tagging dei beni in spedizione			
Consegne JIT dai fornitori	Differenze in quantità dei beni trasportati	Tracking dei beni trasportati			
	Ritardi inaspettati durante il trasporto	Riallocazione smart dell'ordine			
Cuilumna dal farmitana	Risorse ed expertise inadeguati	Interfacce standardizzate			
Sviluppo del fornitore	Compatibilità delle attrezzatture tra organizzazioni	Cooperazione Sinergetica - Organizzazione Virtuale			
	Poca Flessibilità per il cambio prodotti	Tempo di congelamento allungato			
Coinvolgimento Cliente	Relazione tra bisogni e funzioni	Big Data & QFD			
	Acquisizione degli esatti bisogni del cliente	Analisi d'uso dei prodotti			

Sintesi Integrazione lean e Industry 4.0 [2/3]

Dimensioni del Lean Manifacturing	Sfide per l'implementazione della lean	Soluzione Industry 4.0			
Produzione PULL	Tracciamento sbagliato del materiale rifornito	Monitoraggio del rifornimento del materiale			
Produzione Poll	Cambiamenti nella schedule di produzione	Tracking della schedule e aggiornamento kanban			
	Errori nel conteggio di magazzino	Conteggio del magazzino real-time			
Flow Continuo	Carenza di capacità	Subappalti			
	Sistema di controllo centralizzato	Decision Making decentralizzato			
Diduniana dai tampi di Catum	Adattamento al processo basato	Auto-ottimizzazione e Apprendimento della macchina			
Riduzione dei tempi di Setup	sull'esperienza degli esseri umani	Comunicazione tra macchina e pezzo in lavorazione			
Total Draductive a manutanticus	Nessun controllo dei guasti della macchina	Comunicazione Uomo-Macchina			
Total Productive e manutenzione preventiva	Tempo di problem solving sconosciuto	Accertamento di auto-manutenzione			
	Tempo di problem solving scollosciuto	Sistema di manutenzione predittivo			

Sintesi Integrazione lean e Industry 4.0 [3/3]

Dimensioni del Lean Manifacturing	Sfide per l'implementazione della lean	Soluzione Industry 4.0			
	Competenze degli operatori	Comunicazione tra macchina e pezzo in lavorazione			
Controllo statistico di processo	Incapacità di tracciare le variazioni dei	Miglioramento dell'interfaccia utente			
	processi	Tracking, integrazione e management del processo			
	Sistema di feedback errato	Dispositivi di feedback smart			
Coinvolgimento operatori	Pratiche di valutazione delle performance	Sistema di supporto dei lavoratori			
	Lavorazioni monotone	Miglioramento dell'interfaccia utente			

Protagonisti del proprio cambiamento

Cambiare il mondo non basta. Lo facciamo comunque. E, in larga misura, questo cambiamento avviene persino senza la nostra collaborazione.

Nostro compito è anche interpretarlo. E ciò, precisamente, per cambiare il cambiamento.

Affinché il mondo non continui a cambiare senza di noi. E, alla fine, non si cambi in un mondo senza di noi.

[G. Anders, l'uomo è antiquato (1980)]